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Abstract: Study on properties of Sierpinski-type fractals, including dimension, measure, connectedness, Lipschitz
equivalence, etc are very interesting. Although there have been some very nice results were obtained, there is still
a long way to go to solve all the problems. In order to facilitate understanding of these results and further study,
in this paper, we simulate this kind of fractals and their geometric constructions in Matlab environment that is
more easily understood and mastered for researcher base on the recursive and iterative algorithms that are used to
simulate fractals. Furthermore, our results are also interesting results to enrich the theoretical and applied research
of fractal simulation.
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1 Introduction
For an given integer n ≥ 2, let D ⊂ {0, . . . , n− 1}2.
We shall call the unique non-empty compact subset
ED ⊂ R2 satisfying the following set equation

ED = (ED +D)/n

a Sierpinski carpet-type fractal throughout this
paper. If the above set {0, . . . , n − 1}2 is re-
placed by ∆ = {k1α + k2β : k1 + k2 ≤
n − 1 and k1, k2 ∈ N ∪ {0}},where α = (1, 0)
and β = (1/2,

√
3/2), then we call ED a Sierpinski

gasket-type fractal. In particular, for n = 3, D =
{(0, 0), (1, 0), (2, 0), (0, 1), (2, 1), (0, 2), (1, 2), (2, 2)}
⊂ {0, 1, . . . , n − 1}2, ED is well-known
Sierpinski carpet, and for n = 2, D =
{(0, 0), (1, 0), (1/2,

√
3/2)} ⊂ ∆, ED is well-

known Sierpinski gasket. Let I = [0, 1]2 or be the
following set

{c1α+ c2β : c1 + c2 ≤ 1 and 0 ≤ c1, c2 ≤ 1}.

We define E1
D = (I+D)/n, and recurrently, Ek+1

D =

(Ek
D + D)/n for k ≥ 1. Then Ek

D is a union of
squares(equilateral triangles) of side 1/nk. Clearly,
Ek+1

D ⊂ Ek
D and ED = ∩∞

k=1E
k
D.

In recent years, study on properties of Sierpinski-
type fractals described as above, including dimension,
measure, connectedness, Lipschitz equivalence, etc

have aroused wide concern ([2,4,7-10,13-16,18-21]).
Although there have been some very nice results were
obtained, there is still a long way to go to solve all
the problems. It is well know that the in-depth analy-
sis and understanding of topological structure of frac-
tals are very important to study properties of fractals.
In this process, simulate the fractal and its geometric
construction by computer, will provide us the most in-
tuitive discussion and explanation. The computer sim-
ulation of fractal patterns is based on the basic theory
of fractal, is one of the most popular area of study in
computer graphics at present. Study the algorithms
and programs of drawing fractal not only can offer
technical support for the study of fractal theory, but
also can stimulate creative inspiration, to further en-
rich the content of computer graphics, and also can
drive a lot of old discipline in newborn. For exam-
ple, the complex analysis don’t obtain further devel-
opment for many years, until the computer graphics
display completely the complex structures of Julia set,
the mathematical theory of this discipline was once
again leap development. At present, although many
works(computer programming) have been devoted to
the study of the computer simulation of Sierpinski-
type fractals, especially the classic Sierpinski carpet
and Sierpinski gasket [1, 5, 11, 17], these source codes
of computer programs that we saw in these works are
mostly written by the programming language: Java,
C++, Delphi, Java, etc. Thus these works are usually
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not easy to be understood and applied for researchers
to engage in mathematics study, unless have the cor-
responding knowledge of programming language. In
addition, since the majority of these works came from
the researchers and engineering and technical person-
nel that engage in the fields of computer graphics and
digital image processing etc, thus these works usually
tend to ignore mathematical problems in study, and
focus on the design and the realization of computer
algorithms of drawing fractal. So the different fine
structures of Ek

D and Ek+1
D mentioned as above can’t

well described by these works on one hand, but on the
other hand we also can’t easy to obtain any Sierpinski-
type fractal pattern is what we need in the study only
by modifying a few parameters. But these contents
just are the most important for researchers of studying
the properties of such fractals. How to use a popular
and easy-to-understand way as much as possible, in
a real-time information exchange interface, such that
the researchers can well-obtain any pattern is what
they need in the study of a class of fractal patterns
by modifying a few parameters, without need to know
much about the knowledge of complex programming
language, at the same time complete some relative
functions such as color adjustment, graphical compar-
ison and storage etc, and generate fractal patterns with
certain theoretical research value, has turned into one
of the hot problems concerned by many researchers.
For this motive and note that the powerful advan-
tages of Matlab in numerical calculation and graphic
visual ability and its programming language is more
easily understood and mastered by mathematical re-
searchers. In this paper, we study the simulation of
the above-mentioned Sierpinski-type fractals and their
geometric constructions in Matlab environment base
on the recursive theory and iterative theory that are
used to simulate fractals. Our results not only can
well-describe the different fine structures of Ek

D and
Ek+1

D in the process of constructing Siepinski-type
fractal ED, but also can well present different patterns
are what we need in study only by modifying a few
parameters.

The rest of this paper is organized as follows.
In section 2, some basic facts and known concepts
needed in our discussion are described, for details, see
[4, 7, 12, 17]. An algorithm and a computer program
of simulating the Sierpinski gasket-type fractals and
their geometric constructions are given base on itera-
tive and recursive theory in section 3. In section 4, be-
sides an program similar to section 3 is given, we will
give the other algorithm and program of simulating
the Sierpinski carpet-type fractals and their geometric
constructions only by recursive theory.

2 Some basic facts and concepts

2.1 Function M-files
For simple problems, entering your requests at the
Matlab command window prompt is fast and efficient.
However, as the number of commands increases or
trial and error is done by changing certain variables
or values, typing the commands over and over at the
Matlab command window prompt becomes tedious.
To get around this, we enter the commands into a text
file (called M-files or Script M-files [12]), and exe-
cute them by simply typing filename at the Matlab
command window prompt. All function M-file names
must end with the extension ‘.m’ (e.g. test.m). Func-
tion M-files are like Script M-files but can pass param-
eters and isolate variables. The structure of a typical
function M-file, say my fun.m, is as follows:

function[output arguments]=my fun(input argu-
ments)

code
......
code
......

Note that the word function appears at the start of the
file. In addition, the output arguments and input argu-
ments and name of the function are listed. If a func-
tion only has a single output argument, then the square
brackets are not required. If a function does not have
any output arguments, then neither the square brackets
nor the equals sign that follows are used.

2.2 Recursion Theory
Recursion is the process of repeating items in a self-
similar way [5]. In computer programming, recursion
is a function that can directly or indirectly call itself.
A general syntax of recursion in Matlab looks like
this:

function Recur(n)
......
Recur(m)
......

Recursion is a method of solving problems based on
the divide and conquer mentality. The basic idea
is that you take the original problem and divide it
into smaller (more easily solved) instances of itself,
solve those smaller instances (usually by using the
same algorithm again) and then reassemble them into
the final solution. In this paper, the recursive al-
gorithm will be used in two places, one is to di-
vide each squares(triangles) in Ek

D into n2 equal-sized
squares(triangles) for any k, the other is to fill the
squares are removed after each division with white.
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2.3 Theory of Iterated Function System(IFS)
We call the finite set {fi : i = 1, 2, . . . , N} is an
iterated function system if each fi is a contraction
mapping on a complete metric space. Hutchinson [7]
showed that, for the metric space Rd, such a system of
functions has a unique nonempty compact set(closed
and bounded) E such that

E =

N∪
i=1

fi(E)

and for any nonempty compact subset A ⊂ Rd, we
have

E =
∞∩
k=1

Sk(A) = lim
k→∞

Sk(A), (1)

where S(A) = ∪N
i=1fi(A), S

k+1(A) = S(Sk(A)) for
k ≥ 1. There are two iteration algorithms for generat-
ing fractals using an iterated function systems. They
are deterministic algorithm and random iteration algo-
rithm. The set equation (1) is the basis of constructing
fractals using deterministic algorithms. In this paper,
we will use deterministic algorithm to computer all
the lower-left coordinates of squares(triangles) in Ek

D
for any k ≥ 1.

3 Simulation of the gasket-type frac-
tal and its geometric construction

The geometric construction of the Sierpinski gasket-
type fractals ED mentioned in Introduction is the fol-
lowing: we divide an equilateral triangle with side 1
into n2 congruent triangles, choose some triangles ac-
cording to the rule [2] described by D, again divide
each chosen triangles into n2 congruent ones, choose
the triangle according to the same rule and repeat the
procedure inductively to the infinity, we can obtain the
set ED. For any k ≥ 1, Ek

D here is the union of trian-
gles that are chosen in the step k. Let

fi(x) =
1

n
(x+ ai), x ∈ R2, (2)

where ai ∈ D, i = 1, 2, . . . , ♯D. Then ED is unique
invariant set of such a iterated function systems.

3.1 Algorithm and Procedure
The steps of creating the Sierpinski-gasket fractals as
following:

¬ Suppose (x, y) is the lower-left coordinate of
an equilateral triangle with side d.

­ Divide this equilateral triangle into n2 congru-
ent triangles and computer all the lower-left coordi-
nates of triangles that chosen according to certain rule

by certain transformation equations. For example, we
may compute the lower-left coordinates of triangles in
E1

D by (2).
®Assign the above calculated values to the vari-

able of lower-left coordinate of initial equilateral tri-
angle respectively and ready to participate in the cal-
culation.

¯ Suppose the iterated depth is k, circularly exe-
cute procedure ­∼®.

° Fill all of triangles with side d/nk and lower-
left coordinates obtained by the above calculation
with blue.

3.2 Program Design
function Sierpinskitriangle(M,x, y, d, n, k)
% SIERPINSKITRIANGLE, Display the geometric
construction process of Sierpinski gasket-type fractal.
% Call format: Sierpinskitriangle(M,x, y, d, n, k).
%M = [a1, a2, . . . , am; b1, b2, . . . , bm]. If we type it
at the Matlab command window prompt, we can ob-
tain the following 2×m matrix:(

a1 a2 . . . am
b1 b2 . . . bm

)
,

where m ≥ 1 is an integer, (ai, bi) ∈ R2, i =
1, . . . ,m, are the lower-left coordinates of triangles
that chosen according to certain rule after the first di-
vision for initial equilateral triangles.
%x is the x−coordinate of lower-left corner of initial
equilateral triangle.
% y is the y−coordinate of lower-left corner of initial
equilateral triangle.
% d is the side length of initial equilateral triangle.
% 1/n is contraction radio.
% k is iterated depth.
a = [x, x+ d, x+ d/2];
b = [y, y, y + sqrt(3) ∗ d/2];
plot(a, b) % Draw an equilateral triangle with side
d.
hold on
for j = 1 : k

a1 = []; b1 = []; % Two empty arrays, will be
used to store the x and y coordinates of lower-left cor-
ner of chosen triangles after the kth step construction
respectively.

for i = 1: length(x)
x1 = x(i) + d ∗M(1, :);
y1 = y(i) + d ∗M(2, :);
trianglegrid(x(i), y(i), n − 1, d) % Divide

the equilateral triangle with lower-left coordinate
(x(i), y(i)) and side d into n2 congruent triangles.

a1 = [a1, x1];b1 = [b1, y1];
end
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d = d/n; x = a1; y = b1;
end
for i = 1: length(x)

fill(x(i) + [0, d/2, d], y(i) + [0, sqrt(3) ∗
d/2, 0],′ b′) % Fill the equilateral triangle with lower
left corner (x(i), y(i)) and side d by blue.

hold on
end
hold off
axis off, axis equal
set(findobj(gcf,’type’,’patch’),’edgecolor’,’none’);
function trianglegrid(x, y, r, s)
t = r; c = [];
while t >= 0

for i = 0 : t
a = [x+ i ∗ s/(r+ 1), x+ (i+ 1) ∗ s/(r+

1), x+ (2 ∗ i+ 1) ∗ s/(2 ∗ (r + 1)), x+
i ∗ s/(r + 1)];

b = [y, y, y + sqrt(3) ∗ s/(2 ∗ (r + 1)), y];
c = [c, a];
plot(a, b)
hold on

end
x = c(3); y = b(3); t = t− 1; c = [];
end

The percent-sign (%) denotes a comment, every-
thing following this sign up to the end of the sen-
tence (next sentence break) will be ignored in this
program. Saving the above text in a file called Sier-
pinskitriangle.m in your current directory. For given
D ⊂ {k1α + k2β : k1 + k2 ≤ n − 1 and k1, k2 ∈
N ∪ {0}}, let MD = [a1, a2, . . . , aD; b1, b2, . . . , bD],
where (nai, nbi) ∈ D for each i. We can obtain the
fine details of the kth step of constructing Sierpinski
gasket-type fractal ED (begin with an equilateral tri-
angle with side 1 and lower-left coordinate (0, 0) ) by
running the following command:

Sierpinskitriangle(MD, 0, 0, 1, n, k)

at the Matlab command window prompt.

Example 1. Let n = 2,

D1 = {(0, 0), (1, 0), (1
2
,

√
3

2
)}.

We can obtain the fine details of the first three
steps of constructing Sierpinski gasket ED1 by
running continuous the following commands:
Sierpinskitriangle([0, 1/2, 1/4; 0, 0, sqrt(3)/4], 0, 0, 1
, 2, k), k = 1, 2, 3, see Figure 1.

Example 2. Let n = 3,

D2 = {(0, 0), (1, 0), (3
2
,

√
3

2
, (1,

√
3)}.

(a) The first step (b) The second step

(c) The third step

Figure 1: The first three steps of constructing ED1 .

We can obtain the fine details of the first three
steps of constructing Sierpinski gsket-type fractal
ED2 by running continuous the following commands:
Sierpinskitriangle([0, 1/3, 1/2, 1/3; 0, 0, sqrt(3)/6,
sqrt(3)/3], 0, 0, 1, 3, k), k = 1, 2, 3, see Figure 2.

Similarity, take
D3 = {(0, 0), (1, 0), (2, 0)(3, 0), (32 ,

√
3
2 ), (1,

√
3),

(32 ,
3
√
3

2 )};
D4 = {(1, 0), (2, 0), (12 ,

√
3
2 ), (32 ,

√
3
2 ), (52 ,

√
3
2 ), (1,√

3), (2,
√
3), (32 ,

3
√
3

2 )};
D5 = {(1, 0), (3, 0), (12 ,

√
3
2 ), (32 ,

√
3
2 ), (52 ,

√
3
2 ), (72 ,√

3
2 ), (2,

√
3), (32 ,

3
√
3

2 )(52 ,
3
√
3

2 )};
D6 = {(2, 0), (12 ,

√
3
2 ), (32 ,

√
3
2 ), (52 ,

√
3
2 ), (72 ,

√
3
2 ),

(1,
√
3), (2,

√
3), (3,

√
3), (32 ,

3
√
3

2 ), (52 ,
3
√
3

2 ), (2, 2
√
3)},

and run the the following commands in turn:
Sierpinskitrigle(MDi , 0, 0, 1, 4, 3)(i = 3, 4),
Sierpinskitrigle(MDi , 0, 0, 1, 5, 2)(i = 5, 6).

We can obtain the corresponding fine details as Figure
3.

4 Simulation of the carpet-type frac-
tal and its geometric construction

The geometric construction of the Sierpinski carpet-
type fractal ED mentioned in Introduction is the fol-
lowing: we divide a unit square into n2 congruent
squares, choose some squares according to the rule
described by D ⊂ {0, 1, . . . , n − 1}2, again divide
each chosen squares into n2 congruent ones, choose
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(a) The first step (b) The second step

(c) The third step

Figure 2: The first three steps of constructing ED2 .

(a) i=3 (b) i=4

(c) i=5 (d) i=6

Figure 3: The third step of constructing EDi(i = 3, 4)
and the second step of constructing EDi(i = 5, 6).

the square according to the same rule and repeat the
procedure inductively to the infinity, we can obtain
the set ED. For any k ≥ 1, Ek

D here is the union
of squares that are chosen in the step k. Firstly, we
have the following program design by using the simi-
lar algorithm and procedure as in Section 3.

4.1 Program design (1)
function Sierpinskicarpet1(M,x, y, d, n, k)
% SIERPINSKICARPET1, Display the geometric
construction process of Sierpinski carpet-type fractal.
% Call format: Sierpinskicarpet1(M,x, y, d, n, k).
%M = [a1, a2, . . . , am; b1, b2, . . . , bm], where
(ai, bi) ∈ R2, i = 1, . . . ,m, are the lower-left co-
ordinates of squares that chosen according to certain
rule after the first division for the initial square.
%x is the x−coordinate of lower-left corner of initial
square.
% y is the y−coordinate of lower-left corner of initial
square.
% d is the side length of initial square.
% 1/n is contraction radio.
% k is iterated depth.
for j = 1 : k

a1 = []; b1 = []; % Two empty arrays, will be
used to store the x and y coordinates of the lower-left
corner of chosen squares after the kth step construc-
tion respectively.

for i = 1:length(x)
x1 = x(i) + d ∗M(1, :);
y1 = y(i) + d ∗M(2, :);
squaregrid(x(i), y(i), n, d) % Divide the

square with lower-left coordinate (x(i), y(i)) and
side d into n2 congruent squares.

a1 = [a1, x1]; b1 = [b1, y1];
end
d = d/n; x = a1; y = b1;

end
for i = 1: length(x)

fill(x(i) + [0, d, d, 0, 0], y(i) + [0, 0, d, d, 0],′ b′)
% Fill the square with lower-left coordinate
(x(i), y(i)) and side d by blue.

hold on
end
hold off, axis off, axis equal
% set(findobj(gcf,’type’,’patch’),’edgecolor’,’none’)
function squaregrid(x, y, r, s)
a = [x : s/r : x+ d]; b = [y : s/r : y + d];
plot(a,meshgrid(b, a),′ b′)
hold on
plot(meshgrid(a, b), b,′ b′)

Saving the above text in a file called Sierpinski-
carpet1.m in your current directory. For given D ⊂
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(a) The first step (b) The second step

(c) The third step (d) The forth step

Figure 4: The first four steps of constructing Sierpin-
ski carpet ED7 .

{0, 1, . . . , n− 1}2, let

MD = [a1, a2, . . . , a♯D; b1, b2, . . . , b♯D],

where (nai, nbi) ∈ D for each i. We can obtain the
fine details of the kth step of constructing ED(Begin
with an unit square [0, 1]2) by running the following
command:

Sierpinskitriangle(MD, 0, 0, 1, n, k)

at the Matlab command window prompt.

Example 3. Let n = 3,

D7 = {(0, 0), (1, 0), (2, 0), (0, 1), (2, 1),

(0, 2), (1, 2), (2, 2)}.
We can obtain the details of the first four steps of con-
structing Sierpinski carpet ED7 by running continu-
ous the following commands:

Sierpinskicarpet1(MD7 , 0, 0, 1, 3, k), k = 1, 2, 3, 4,

where MD7 = [0, 1/3, 2/3, 0, 2/3, 0, 1/3, 2/3; 0, 0, 0,
1/3, 1/3, 2/3, 2/3, 2/3], see Figure 4.

Example 4. Let n = 3,

D8 = {(0, 0), (1, 1), (2, 1), (0, 2)}.

(a) The first step (b) The second step

(c) The third step (d) The forth step

Figure 5: The first four steps of constructing ED8 .

We can obtain the fine details of the first four
steps of constructing Sierpinski carpet-type fractal
ED8 by running continuous the following commands:
Sierpinskitrigle([0, 1/3, 2/3, 0; 0, 1/3, 1/3, 2/3], 0, 0,
1, 2, k), k = 1, 2, 3, 4, see Figure 5.

Take
D9 = {(0, 0), (2, 0), (1, 1), (0, 2), (2, 2)},
D10 = {(0, 0), (1, 0), (2, 0), (1, 1), (0, 2), (1, 2),

(2, 2)},
D11 = {(0, 0), (1, 0), (1, 1), (2, 1), (1, 2)},
D12 = {(0, 0), (1, 0), (1, 1), (2, 2), (1, 2), (2, 2)}

and run the following commands in turn:

Sierpinskitrigle(MDi , 0, 0, 1, 3, 4)(i = 9, 10, 11, 12).

We can obtain the corresponding fine details as Figure
6.

For given rule D ⊂ {0, 1, . . . , n− 1}2. Note that
the square has better symmetry than equilateral trian-
gle, so it is more easier to describe this rule D by a
n × n matrix with element equal 0 or 1 for square.
For example, for the above Di(i = 1, 2), we denote
the chosen squares according to the rule Di(i = 1, 2)
by 1, the others by 0. Then we can use the following
two 3 × 3 matrixes to describe the rules D1 and D1

respectively: 1 1 1
1 0 1
1 1 1

 ,

 1 0 0
0 1 1
1 0 0

 .
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(a) i = 9 (b) i = 10

(c) i = 11 (d) i = 12

Figure 6: The fouth step of constructing EDi(i =
9, 10, 11, 12).

Thus we could simulate the geometric construction
process of Sierpinski carpet-type fractal by using the
other algorithm and program as follows, too.

4.2 Algorithm and procedure
The steps of creating the Sierpinski-carpet fractals as
following:

¬Suppose t is the lower-left coordinate of a
square with side d.

­Fill the initial square by blue, and divide it into
n2 congruent squares. We denote the chosen squares
according to the certain rule by 1, the others by 0, and
store these information by a n× n matrix.

®Suppose the iterated depth is k. Traversal the
matrix in step 2. If encounter 0, fill the corresponding
place with white. If encounter 1, assign the lower-
left coordinate and side length of corresponding small
square to the variables of lower-left coordinate and
side length of initial square. While k = 0, end; while
k > 0, execute the step 2.

4.3 Program and design

function Sierpinskicarpet2(M, t, d, k)
% SIERPINSKICARPET2, Display the geometric
construction process of Sierpinski carpet-type fractal.
% Call format: Sierpinskicarpet2(M, t, d, k).
%M = [a11, a12, . . . , a1n; . . . ; an1, an2, . . . , ann],

aij = 0 or 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n. If we type
it at the Matlab command window prompt, we can see
a n× n matrix with elements equal 0 or 1 in screen.
% k is iterated depth.
% t = [t(1), t(2)] is lower-left coordinate of initial
square.
% d is side length of initial square.
if k == 0
return
end
m =length(M(1, :));
drawgrid(t, d,m) % Traversal each element in M ,
fill the corresponding square with lower-left coordi-
nate t and side d by white if encounter 0.
for i = 1 : m

for j = 1 : m
if(M(i, j) == 0)

square([t(1)+d∗ (j−1)/m, t(2)+d∗
(m− i)/m], d/m)

else
fillsquare(M, [t(1) + d ∗ (j −

1)/m, t(2) + d ∗ (m− i)/m], d/m, k − 1)
end

end
end
function square(t, d) % Fill the square with lower-
left coordinate t and side d by white.
fill([t(1), t(1) + d, t(1) + d, t(1)], [t(2), t(2), t(2) +
d, t(2) + d],′ k′);
hold on
function drawgrid(t, d,m) % Fill the square with
lower-left coordinate t and side d by blue and divide
it into n2 congruent squares.
fill([t(1),t(1)+d,t(1)+d,t(1)],[t(2),t(2),t(2)+d,t(2)+d],’b’)
hold on
x = [t(1) : d/m : t(1) + d]; y = [t(2) : d/m :
t(2) + d];
plot(x,meshgrid(y, x),′ b′)
hold on
plot(meshgrid(x, y), y,′ b′)
axis off, axis equal

Saving the above text in a file called Sierpin-
skicarpet2.m in your current directory. As pre-
viously D ⊂ {0, 1, . . . , n − 1}2 and ED. Let
MD denote the n × n matrix with elements equal
0 or 1 corresponding with the rule D. We can
obtain the fine details of the kth step of con-
structing ED by running the following command:
Sierpinskitriangle2([a11, a12, . . . , a1n; . . . ; an1, an2,
. . . , ann], [0, 0], 1, k) at the Matlab command win-
dow prompt, where aij is the element of ma-
trix MD in row i of column j. Set M ′

D =
[a11, a12, . . . , a1n; . . . ; an1, an2, . . . , ann].

Example 5. Let
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(a) i = 13 (b) i = 14

(c) i = 15 (d) i = 16

Figure 7: The third step of constructing EDi(i =
13, 14, 15, 16).

D13 = {(1, 0), (2, 0), (0, 1), (3, 1), (0, 2), (3, 2),
(1, 3), (2, 3)},

D14 = {(0, 0), (3, 0), (1, 1), (2, 1), (1, 2), (2, 2),
(0, 3), (3, 3)},

D15 = {(0, 0), (4, 0), (0, 1), (4, 1), (0, 2), (1, 2),
(2, 2), (3, 2), (4, 2), (0, 3), (4, 3), (0, 4), (1, 4), (2, 4),
(3, 4), (4, 4)},

D16 = {(2, 0), (1, 1), (2, 1), (3, 1), (0, 2), (1, 2),
(2, 2), (3, 2), (4, 2), (1, 3), (2, 3), (3, 3), (2, 4).
Then

MD13 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



MD14 =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1



MD15 =


1 1 1 1 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1



MD16 =


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0


We can obtain the fine details of the third step of
constructing Sierpinski carpet-type fractals EDi(i =
13, 14, 15, 16) by running the following commands:

Sierpinskicarpet2(M ′
Di
, [0, 0], 1, 3), (i = 13, 14, 15, 16),

see Figure 7.

Remark 1. For any k ≥ 1, according to the actual
needs, we also can obtain the pattern of Ek

D by re-
moving the part of division in programming.
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